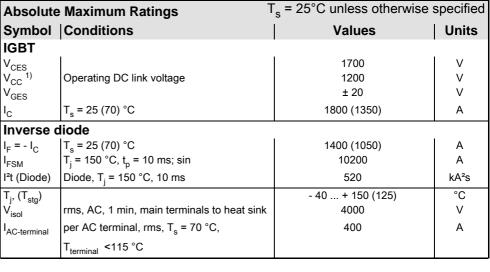
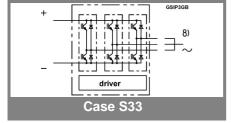

SKiiP 1803GB172-3DW

SKiiP[®] 3

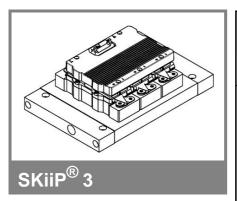

2-pack-integrated intelligent Power System

Power section SKiiP 1803GB172-3DW


Preliminary Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics				$T_s = 25$ °C unless otherwise specified			
Symbol	bol Conditions				min.	typ.	max.	Units
IGBT						71		
V _{CEsat}	I _C = 900 measured a	A, T _j = 25 (1 t terminal	125) °C;			1,9 (2,2)	2,4	V
V _{CEO}	T _j = 25 (125) °C; at terminal T _i = 25 (125) °C; at terminal					1 (0,9) 1 (1,4)	1,2 (1,1) 1,3 (1,7)	V mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}\text{C}$					mA		
$E_{on} + E_{off}$	I _C = 900 A, V _{CC} = 900 V					mJ		
	T _i = 125 °C, V _{CC} = 1200 V					mJ		
R _{CC+EE}	terminal	chip, T _j = 25	5 °C			mΩ		
L _{CE}	top, botto	om ´			4			nΗ
C _{CHC}	per phas	e, AC-side				3		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 900 A	A, T _j = 25 (1 t terminal	25) °C			2 (1,8)	2,15	V
V_{TO}	$T_i = 25 (1$	125) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25 (1$	25) °C				1 (1,1)	1,1 (1,2)	mΩ
E _{rr}	$I_{\rm C} = 900$	A, $V_{CC} = 90$	0 V			108		mJ
	$T_j = 125$	°C, V _{CC} = 1	200 V			128		mJ
Mechani	cal data							
M_{dc}		nals, SI Uni			6		8	Nm
M _{ac}		nals, SI Uni			13	2,4	15	Nm
W	SKiiP® 3 System w/o heat sink					kg		
W	heat sink					5,2		kg
						c); "s" ref (acc.IEC		
$R_{th(j-s)l}$	per IGBT	•					0,017	K/W
$R_{th(j-s)D}$	per diode	;					0,033	K/W
Z _{th}	R _i (mK/W) (max. values)							
	1	2	3	4	1	2	3	4
$Z_{th(j-r)l}$	1,4	6,8	7,8	0	69	0,35	0,02	1
$Z_{th(j-r)D}$	2,6	4	17,7	17,7	50	5	0,25	0,04
Z _{th(r-a)}	4,6	4,7	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1803GB172-3DW

2-pack-integrated intelligent Power System

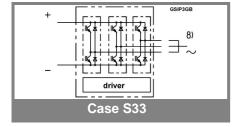
2-pack integrated gate driver SKiiP 1803GB172-3DW

Preliminary Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	Γ _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	9	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	9	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	380+34*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply		1500		Α
	voltage for external components				
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		1875		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);		not implemented	i	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

